Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity

نویسندگان

  • MENGFEI WANG
  • KUNTING ZHU
  • LUYU ZHANG
  • LINGYU LI
  • JING ZHAO
چکیده

Previous studies have demonstrated that thioredoxin 1 (Trx1) exerts neuroprotective effects against cerebral ischemia/reperfusion injury caused by oxidative stress. While Trx1 is known to maintain the anti‑oxidant activity of 2‑Cys peroxiredoxins (Prdxs), the underlying mechanisms of its protective effects have remained to be elucidated, which was the aim of the present study. For this, an in vitro ischemic model of hypoxemia lasting for 4 h, followed by 24 h of reperfusion was used. Primary astrocytes from neonatal rats were pre‑treated with small interfering RNA targeting Trx1 prior to oxygen glucose deprivation/reperfusion (OGD/R). MTS and lactate dehydrogenase assays were performed to evaluate cell viability. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were employed to assess the mRNA and protein expression levels of Prdx1‑4 and Prdx‑SO3. Furthermore, a dual luciferase reporter assay was used to assess the interaction between activator protein‑1 (AP‑1) and Trx1. The present study demonstrated that OGD/R decreased the cell viability and increased cellular damage, which was more marked following Trx1 knockdown. The expression of Prdx1‑4 and Prdx‑SO3 protein was higher in the cells subjected to OGD/R. Knockdown of Trx1 markedly decreased the levels of Prdx1‑4 but increased Prdx‑SO3 mRNA and protein levels. The results of the present study also suggested that AP‑1 directly activated the expression of Trx1. The present study demonstrated that Trx1 exerts its neuroprotective effects by preventing oxidative stress in astrocytes via maintaining Prdx expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the PLA2-independent peroxiredoxin VI activity in the survival of immortalized fibroblasts exposed to cytotoxic oxidative stress.

Peroxiredoxin VI (PrxVI) is a bifunctional enzyme with non-selenium glutathione peroxidase and Ca2+-independent acidic phospholipase A2 activities. We demonstrate that transfection-mediated PrxVI overexpression protects immortalized human WI-38 and murine NIH3T3 fibroblasts against cytotoxic doses of tert-butylhydroperoxide and H2O2. Mutants for either glutathione peroxidase or phospholipase A2...

متن کامل

Discovering Antioxidant Molecules in the Archaea Domain: Peroxiredoxin Bcp1 from Sulfolobus solfataricus Protects H9c2 Cardiomyoblasts from Oxidative Stress

Peroxiredoxins (Prxs) are ubiquitous thiol peroxidases that are involved in the reduction of peroxides. It has been reported that prokaryotic Prxs generally show greater structural robustness than their eukaryotic counterparts, making them less prone to inactivation by overoxidation. This difference has inspired the search for new antioxidants from prokaryotic sources that can be used as possib...

متن کامل

Excitotoxic insults lead to peroxiredoxin hyperoxidation

Post-mitotic neurons must have strong antioxidant defenses to survive the lifespan of the organism. We recently showed that neuronal antioxidant defenses are boosted by synaptic activity. Elevated synaptic activity, acting via the N-methyl-D-aspartate (NMDA) receptor, enhances thioredoxin activity, facilitates the reduction of hyperoxidized peroxiredoxins, and promotes resistance to oxidative s...

متن کامل

Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation.

Disulphide formation within the endoplasmic reticulum (ER) requires the activity of the ER oxidase Ero1, and as a consequence, generates hydrogen peroxide. The production of hydrogen peroxide is thought to lead to oxidative stress that ultimately results in apoptosis. Here, we show that mammalian peroxiredoxin IV (PrxIV) metabolises hydrogen peroxide produced by Ero1. We demonstrate that the pr...

متن کامل

Increased astrocytic expression of mitochondrial antioxidant enzymes in active multiple sclerosis lesions

Axonal degeneration is widespread in multiple sclerosis (MS) lesions and is considered to be the main pathological correlate of permanent disability in patients. Recent, evidence suggests that reactive oxygen species (ROS) derived from inflammatory cells drive axonal degeneration in active MS lesions by inducing intra-axonal mitochondrial dysfunction. Besides being a target of exogenous ROS, mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016